NEUTRON EMISSION FROM FRACTURE AND EARTHQUAKES

Alberto Carpinteri e collaboratori

NEUTRON EMISSIONS FROM EARTHQUAKES

- Sobolev, G.A., Shestopalov, I.P., Kharin, E.P. "Implications of Solar Flares for the Seismic Activity of the Earth". Izvestiya, *Phys. Solid Earth* **34**: 603-607 (1998).
- Volodichev, N.N., Kuzhevskij, B.M., Nechaev, O. Yu., Panasyuk M., and Podorolsky M.I., "Lunar periodicity of the neutron radiation burst and seismic activity on the Earth", *Proc. of the 26th International Cosmic Ray Conference*, Salt Lake City, 17-25 August, 1999.
- Kuzhevskij, M., Nechaev, O. Yu. and Sigaeva, E. A., "Distribution of neutrons near the Earth's surface", *Natural Hazards and Earth System Sciences*, 3: 255-262 (2003).
- Kuzhevskij, M., Nechaev, O. Yu., Sigaeva, E. A. and Zakharov, V. A., "Neutron flux variations near the Earth's crust. A possible tectonic activity detection", *Natural Hazards and Earth System Sciences*, **3**: 637-645 (2003).
- Sigaeva, E., Nechaev, O., Panasyuk, M., Bruns, A., Vladimirsky, B. and Kuzmin Yu., "Thermal neutrons' observations before the Sumatra earthquake", *Geophysical Research Abstracts*, 8: 00435 (2006).

(Continued)

As reported in the literature, an average thermal neutron flux up to 10° cm⁻² s⁻¹ (**10**³ **times the background level**) was detected in correspondence to earthquakes with a magnitude of the 4th degree in Richter Scale (Volodichev N.N., et al. (1999)).

Global seismic activity and neutron flux measurements in the period 1974-1988. Laboratory of Geophysical Precursors, Oblast' Murmansk, Apatity, Kola Peninsula, Russia (Sobolev et al. 1998).

Specimens

During the experimental analysis four test specimens were used:

- two made of <u>Carrara marble</u>, calcite, specimens P1 and P2;
- two made of Luserna granite, gneiss, specimens P3 and P4;
- all of them measuring 6x6x10 cm³.

This choice was prompted by the consideration that, test specimen dimensions being the same, different brittleness numbers would cause catastrophic failure in granite, not in marble.

Specimens P1 and P2 in Carrara marble following compression failure.

Specimens P3 e P4 in Luserna granite following compression failure.

Brittle Fracture Experiment on granite specimen

Load vs. time and cps curve for P3 test specimen of granite.

NEUTRON EMISSION FROM CAVITATION OF LIQUIDS AND FRACTURE OF SOLIDS

IRONDEPLETION R CARBON POLLUTION

Tectonic plate formation (~3.8×10⁹ years ago)

3.8 Billion years ago: Fe (-7%) + Ni (-0.2%) = =Al (+3%) + Si (+2.2%) + Mg (+2%)

2.5 Billion years ago: Fe (-4%) + Ni (-0.8%) = =Al (+1%) + Si (+2.3%) + Mg (+1.5%)

Localization of iron mines

 ^(*) World Iron Ore producers. Available at http://www.mapsofworld.com/minerals/world-iron-ore-producers.html.
 (**) World Mineral Resources Map. Available at http://www.mapsofworld.com/world-mineral-map.html.

Localization of Aluminum mines

Aluminum reservoirs

- More than 10 Mt/year
- from 5 to 10 Mt/year
- from 1 to 5 Mt/year
- from 0.5 to 1 Mt/year

+++++++++

Subduction lines and tectonic plate trenches

Large Andesitic formations (the Rocky Mountains and the Andes)

 ^(*) World Iron Ore producers. Available at http://www.mapsofworld.com/minerals/world-iron-ore-producers.html.
 (**) World Mineral Resources Map. Available at http://www.mapsofworld.com/world-mineral-map.html.

Phengite

	External surface mean value (wt%)	Fracture surface mean value (wt%)	Increase/ decrease with respect to phengite	Increase/ decrease with respect to the same element
Fe	6.2	4.0	-2.2%	-35%
Al	12.5	14.5	+2.0%	+16%
Si	28.0	27.8	NO VARIATIONS	NO VARIATIONS
Mg	0.7	0.8	NO VARIATIONS	NO VARIATIONS
к	8.0	7.7	NO VARIATIONS	NO VARIATIONS

The results of these quantitative analysis represent a direct evidence that piezonuclear reaction

 $Fe_{26}^{56} \rightarrow 2Al_{13}^{27} + 2$ neutrons

has occurred in the rock specimens.

Biotite

	External surface	Fracture surface	Increase/	Increase/
	mean value	mean value	decrease	decrease with
	(wt%)	(wt%)	with respect to	respect to the same
			biotite	element
Fe	21.2	18.2	-3.0 %	-14%
Al	8.1	9.6	+1.5 %	+18%
Si	18.4	19.6	+1.2 %	+6%
Mg	1.5	2.2	+0.7 %	+46%
К	6.9	7.1	NO VARIATIONS	NO VARIATIONS

Therefore, the Fe decrease (-3.0%) in biotite is counterbalanced by an increase in Al (+1.5%), Si (+1.2%), and Mg (+0.7%). Considering these evidences, in analogy to the previous results, it is possible to conjecture that another piezonuclear reaction has been occurred in the biotite crystalline phase during the tests:

 $Fe_{26}^{56} \rightarrow Si_{14}^{28} + Mg_{12}^{24} + 4$ neutrons

Olivine

	External surface mean value (wt%)	Fracture surface mean value (wt%)	Increase/decrease with respect to Olivine	Increase/decrease with respect to the same element
Fe	18.4	14.4	-4.0%	-21%
Si	18.3	20.5	+2.2%	+12%
Mg	21.2	22.8	+1.6%	+7%
Ca	0.5	0.5	NO VARIATIONS	NO VARIATIONS

Therefore, the Fe decrease (-4.0%) in olivine is counterbalanced by an increase in Si (+2.2%) and Mg (+1.6%). Considering these evidences, in analogy to the previous results, the following piezonuclear reaction is conjectured :

Magnetite

	External surface mean value (wt%)	Fracture surface mean value (wt%)	Increase/decrease with respect to Magnetite	Increase/decrease with respect to the same element
Fe	64.8	36.8	-28.0%	+56%
Al	_	10.1	+10.1%	BEFORE ABSENT
Mn	_	2.2	+2.2%	BEFORE ABSENT
Si	1.6	10.3	+8.7%	+540%
0	31.8	38.5	+6.7%	+21%

The Fe decrease (-28.0%) in magnetite is counterbalanced by an increase in Al (+10.1%), Mn (+2.2%), Si (+8.7%) and O (+6.7%). Considering these evidences, in analogy to the previous results, the following piezonuclear reactions are conjectured:

 $\begin{array}{rcl} & Fe_{26}^{56} \rightarrow & 2\,Al_{13}^{27} + 2 \ neutrons \\ & Fe_{26}^{56} \rightarrow & Mn_{25}^{55} + H_1^1 \\ Fe_{26}^{56} \rightarrow & Si_{14}^{28} + O_8^{16} + 2He_2^4 + 4 \ neutrons \end{array}$

Marble

	External surface mean value (wt%)	Fracture surface mean value (wt%)	Increase/ decrease with respect to Carrara Marble	Increase/ decrease with respect to the same element
Ca	13.4	9.8	-3.6 %	-26%
Mg	0.7	0.3	-0.4 %	-57%
0	45.8	36.8	-9.0 %	-19%
С	40.1	53.1	+13.0%	+32%

The Ca, Mg and O decreases (-3.6%), (-0.4%) and (-9.0%) in marble are counterbalanced by an increase in C (+13.0%). It is possible to conjecture that the following piezonuclear reactions have been occurred:

$$Mg_{12}^{24} \rightarrow 2C_{6}^{12}$$

$$Ca_{20}^{40} \rightarrow 3C_{6}^{12} + He_{2}^{4}$$

$$O_{8}^{16} \rightarrow C_{6}^{12} + He_{2}^{4}$$

Magnesium depletion in the Earth Crust and Carbon concentration in the primordial atmosphere

The assumed virtual Mg increase (~3.5%) can be confirmed by the Carbon content in the primordial atmosphere:

$$Fe_{26}^{56} \rightarrow Mg_{12}^{24} + Si_{14}^{28} + 4 \text{ neutrons}$$
$$Mg_{12}^{24} \rightarrow 2C_6^{12}$$

Assuming a mean density of the Earth Crust equal to 3.6 g/cm³ and a thickness of ~60 km, the mass increase in Mg (~3.5×10²¹ kg) implies a very high atmospheric pressure due to the transformed carbon.

Primordial atmospheric pressure due to piezonuclear C content = ~650 atm Primordial atmospheric pressure reported by other authors = ~650 atm (Liu, 2004)

Liu, L., "The inception of the oceans and CO₂-atmosphere in the early history of the Earth". *Earth Planet. Sci. Lett.*, 227, 179–184 (2004)

CALCIUM DEPLETION R OCEAN FORMATION

3.8 Billion years ago: Ca (-2.5%) + Mg(-3.2%) = = K (+1.4%) + Na (+2.1%) + O (+2.2%)

2.5 Billion years ago: Ca (-1.5%) + Mg(-1.5%) = =K (+1.3%) + Na (+0.6%) + O (+1.1%)

<u>Calcium depletion</u> in the Earth Crust and ocean formation

Global decrease in Ca (-4.0%) is counterbalanced by an increase in K (+2.7%) and in H₂O (+1.3%).

$$\begin{array}{rcl} Ca_{20}^{40} \rightarrow & K_{19}^{39} + H_{1}^{1} \\ Ca_{20}^{40} \rightarrow & 2O_{8}^{16} + 4H_{1}^{1} + 4 \ neutrons \end{array}$$

Considering a mean density of the Earth Crust equal to 3.6 g/cm³ and an average thickness of ~60 km, the partial mass decrease in Ca is about 1.41 ×10²¹ kg.

Considering a global ocean surface of 3.607 ×10¹⁴ m², and an average depth of 3950 m, we obtain a mass of water of about 1.35 ×10²¹ kg.

