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Glow Discharge I:
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Electrolysis I:
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Transmutations I	
  

5/11/2011 19

Glow Discharge III:
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Nuclear Transmutations VI:

Transmuted Deposit on 
the Cathode after Prolonged 

Discharge glow

Grain Size ~ 10microns

Transmuted Atoms Left on the 
Electrode After Prolonged 

Exposure to the Water Plasma 



Transmutations II	
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Nuclear Transmutations VI:

Transmuted Deposit on 
the Cathode after Prolonged 

Discharge glow

Grain Size ~ 10microns

grain Size ~ 10 microns 
and neutrons observed 

on W cathode   
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Nuclear Transmutations VII:

Important to the process is the cathode ceramic sleeve, called ³UHDFWLRQ�FKDPEHU´, which offers,
thanks to its geometry, the correct electrical stability to the plasma. The internal diameter of the
reaction chamber is larger than the cathode diameter by few millimeters.

The following X-ray photos picture (Fig. 8, 9) show the tungsten surface after a good test of 4000
seconds. Photo 1 shows very little etching of the surface, while Photo 2 shows areas where tungsten
melted, indicating a temperature higher than 3400°C.

Fig.8. Areas etched by hydrogen gas Fig.9. Tungsten fusion area (after 4000 sec.)

Important to creating a model is the realization that temperatures in excess of 1000° C are produced,
and they sometimes as high as 3400°C. Such temperatures generate thermionic emission, which
must be considered.

We propose that as the temperature increases, electrons in the metal start to oscillate in a coherent
way. This oscillation is attracted toward the metal surface by the surrounding positive potassium
ions. In addition, at temperatures close to 3400°C, thermonic emission can generate as much as 500
amperes from the heated part of the cathode. (See Fig. 10). Therefore, a considerable number of
electrons are available to the surface region. We believe this condition is important to initiating the
observed transmutation reactions.

Fig. 10. Tungsten thermoionic emission

Worm gas erosionInitial surface preparation 
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Weak Interaction Neutron Production 

e− + p+ → n+νe

Two Body Cross Section σ 
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Electron Mass Renormalization I 

0
2

=⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛−∂−

∂−∂=

ψγ µµ
µ


mcA

c
ei

AAF µννµµν

Strong Electromagnetic Field Fluctuations 
Slowly Varying u(x) and Quickly Varying S(x) 

0)(
)(

)(

0)()(

)(exp)()(

22
2

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∂
−⎟

⎠

⎞
⎜
⎝

⎛−∂−

=+⎟
⎠

⎞
⎜
⎝

⎛ −∂

⎟
⎠

⎞
⎜
⎝

⎛=

xumcxS
xA

c
ei

cmxA
c
exS

xiSxux





µ
µµ

µγ

ψ



Electron Mass Renormalization II 
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Simple Gas Model I 

There is a gas of n neutral atoms with a heavy electron 
bound to a proton as in a heavy electron hydrogen atom.  
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Maiani and coworkers 
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Simple Gas Model II 

There is a fully ionized gas of heavy electrons scattering off 
protons.  

Neutrons produced per unit time per unit volume  
Widom,  Srivastava and Swain 
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Simple Gas Model III 

Maiani  et. al. Regime of 
a Neutral Gas 
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Widom,  Srivastava 
and Swain Regime of a 
Fully Ionized Plasma 
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Propagator Formalism 
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Propagator Formalism III 
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distribution Described by the 

electron propagator in the 
Many body sense. 
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Conclusions 

Water Plasma Systems Yield Weak 
Interaction Neutron Production 
 
Order of Magnitude agreement 
with experiment is reached with 
Simple Fully ionized plasma 
models 
 
More sophisticated treatments of 
plasma electronic motions are still 
required 
 
Bound state electron-proton  wave 
functions get you nowhere. 
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Nuclear Transmutations VI:

Transmuted Deposit on 
the Cathode after Prolonged 

Discharge glow

Grain Size ~ 10microns

5/11/2011 19

Glow Discharge III:



Electro-Strong Induced Nuclear 
Fission via Giant Dipole Resonances 
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Giuliano Preparata Carried out the First 
Estimates of Fracture Energy Contributions  
to Nuclear Transmutations. At the time only  
a few People were Paying any Attention. 
	
  	
  



Piezoelectric Solids I  

Strains in a crystal 
produce voltages 
across the crystal 

and vice versa.  



Piezoelectric Solids II  

The strain Produces a voltage. 
The voltage produces a spark. 



Piezoelectric Solids III  

In the equivalent circuit, C0 represents the geometric 
capacitance of the upper arm. C1 represents the quartz 

oscillator spring constant and L1 represents  the oscillator mass 
in the mechanical lower arm circuit element. The resistance R1 

represents the slight mechanical oscillator damping due to 
mechanical viscosity.   



Earthquake Lights I  

Japanese Earthquake Takes Place 
around the times the light is emitted. 



Earthquake Lights II  

Day and Night Earthquake Lights  



Earthquake Lights III  

Satellite Pictures 
of the L’Aquila 
Region Around 
the Time of the 

2009 Earthquake  



Earthquake Sounds and Seismic Waves I 

Seismic Waves can describe 
compression (P wave) strain 

or shear (S wave) strain.  

P waves travel faster 
than do S waves.  



Earthquake Sounds and Seismic Waves II 

Fracture 
produced 

sound. 



Fractured Granite Stone from a 
Mechanical Engineering Laboratory 



Hydraulic Fracturing I 



Hydraulic Fracturing II 



Thermodynamics I 
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Thermodynamics II 
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Tensile Strength I  

σ F  =  tensile strength of a material beyond which the material fractures 
If the matter is held together by Coulombs law, then in order of magnitude 

the electric fields E F associated with fracture is determined. 
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Tensile Strength II  
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Brittle Fracture 
Tensile Stress 



Micro-Cracks and Brittle Fracture I 
Understanding fast macro-scale fracture from micro-crack post 

mortem patterns 
 

C, Guerra, J.Scheibert, D. Bonamy, D. Dalmas  
 

Proc Natl Acad Sci USA 109, 190 (2012)  



Micro-Cracks and Brittle Fracture IV 

Physical Micro Crack Cartoon Drawing 



Micro-Cracks and Brittle Fracture V 
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Y = Young’s Modulus 
ν = Poisson Ratio 
γs = surface tension 
a = crack width 
σF = tensile fracture stress 
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Neutron Production Within Micro Cracks I: 



J. Phys. G: Nucl. Part. Phys. 40, 015006 (2013). 
 

Neutron production from the fracture of piezoelectric rocks 
 

A Widom1, J Swain1 and Y N Srivastava2 

 
1 Physics Department, Northeastern University, Boston MA, USA 
2 Department of Physics & INFN, University of Perugia, Perugia, Italy 

Neutron Production Within Micro Cracks II: 
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Forces on an Electron in a Micro-Crack 

Neutron Production Within Micro Cracks III: 



Neutron Production Within Micro Cracks IV: 
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Slow Neutron Production Within Micro Cracks V: 

The large mass enhancement of the electrons in 
the neighborhoods of the micro-cracks allow for 

the production of neutrons via the reaction 

enpe ν+→+ +−

There Should be Considerable 
Microwave Radiation 



Neutron Production and Earth Quakes 

Earth Quake 
Power and 

Background  
Neutrons have 

been Correlated  

Sobolev, G.A., Shestopalov, I.P., Kharin, E.P. , Izvestiya, Phys. 
Solid Earth 34: 603-607 (1998). 



Electro-Strong Fission I 

!

Plasma Oscillations Inside Metals and Inside Nuclei  



Electro-Strong Fission II 
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Nuclear Polarizability β and γ Total Cross Section   

γ + (Nucleus)→ (Nucleus)*

(Nucleus)*→(FissionProducts)



Electro-Strong Fission III 

Electrodynamic Excitation of an Iron Nucleus   



Electro-Strong Fission IV 

Electrodynamic Excitation of an Iron Nucleus   



Electro-Strong Fission V 

Electrodynamic Cross Sections  

!
!



Electro-Strong Fission VI 

An Aluminum Fission Chanel Iron an Iron Nucleus Together 
with a Possible Silicon Channel 

>  50 MeV Electrons are Sufficient to Induce Fission 
Channels. The Fission Neutrons are Fast    

γ + 56Fe→ 56Fe*
56Fe* → 2 27Al+ 2n

56Fe* → 28Si+ 24Mg+ 4n



Electro-Strong Fission VII 

!

Rock Fracture Produces Energetic Electrons in Micrcracks 
allowing for Electro-Strong Fission Events. 

Similar Effects are Expected for Microcavities in Water.      



Conclusions: 

Creating Cracks and Cavities in Water Give Rise to 
Energetic Electrons. 
These Energetic Electrons can Induce Electro-Strong 
Fission. 
Fast Neutrons will be produced by Electro-Strong Fission 
Electro-Weak Interaction Have a Slow Neutron Yield 
Initial Experiments have been Introduced in the 
Pioneering Work of A. Carpinteri, G. Lacidogna, O. 
Borla, A. Manuello  et. al. Politecnico di Torino. 
 




