Characterization and Monitoring of Microbes in the International 1 **Space Station Drinking Water** 2 3 4 SAE Paper Offer #: 03ICES-188 5 Myron T. La Duc^{1†}, Randall Sumner², Duane Pierson³, and Kasthuri 6 7 Venkateswaran¹ 8 ¹Biotechnology, Planetary Protection Group, Jet Propulsion Laboratory, California 9 Institute of Technology, Pasadena, CA 10 ²Bionetics Corporation, Kennedy Space Center, Cape Canaveral, FL 11 ³Johnson Space Center, Houston, TX 12 13 Running Title: Monitoring microbes in Space Station Water 14 15 †Author for correspondence: Myron T. La Duc 16 **Present address and Mailing address:** 17 **Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory,** 18 California Institute of Technology, Mail Stop 89; 4800 Oak Grove Dr., Pasadena, 19 CA 91109, USA 20 Tel: (818) 354-8271; Fax: (818) 393-4176 21 E-mail: mtladuc@jpl.nasa.gov 22

t

ABSTRACT

24 This study focuses on the development of procedures to characterize the microbial 25 quality of International Space Station (ISS) and shuttle drinking water at various stages of 26 water treatment. In addition to traditional culture-based techniques, ATP, endotoxin, and 27 DNA targeted microbial enumeration procedures were employed to elucidate the 28 microbial contamination of the ISS drinking water. Drinking water processed at various 29 stages for the STS-113 mission aboard the Endeavor OV-105 shuttle, as well as aboard 30 the ISS, was sampled and examined for microbial contamination using state of the art 31 quantitative and qualitative methodologies. Biomolecule-targeted microbial detection 32 methods revealed the presence of non-cultivable microbes in the drinking water, and 33 confirmed the fact that the measures taken to cultivate microbes from the drinking water 34 samples were estimating only 10% of the microbial contamination. Both culture and 35 DNA-based methodologies reported the presence of Acidovorax temperans, a halogen 36 (biocide) reducing bacterium from the ISS-regenerated water sample. Although the water 37 collected from the drinking fountain did not contain any measurable cultivable microbes, 38 the DNA-based procedures retrieved ribosomal sequences of the opportunistic pathogens 39 Afipia, Delftia, Propionibacterium, and Ochrobactrum. The present study did not confirm 40 the presence of active pathogens in the drinking water, although evidence strongly 41 suggests that implementation of new cultivation approaches to identify the presence of 42 pathogens is essential.

• •

INTRODUCTION

44	As with any aspect of manned space exploration, the integrity/quality of the drinking
45	water aboard the International Space Station (ISS), and space shuttle orbiters as well,
46	must be meticulously maintained and monitored. Pierson (2001) observed that
47	microorganisms are ubiquitous throughout the habitable modules of the ISS and
48	documented that the crewmembers were the predominant source of contamination. It has
49	been reported that the immune systems of astronauts in space frequently lapse into
50	weaker, compromised states (Stowe et al., 2001). Therefore, it is critical to thoroughly
51	and accurately assess the microbial burdens associated with the water and food to be
52	ingested in space. To date, each and every attempt at describing the microbial species
53	present aboard Apollo missions (Ferguson et al., 1975), Skylab (Taylor et al., 1977), US
54	space shuttles (Koenig and Pierson, 1977; Pierson, 2001), the Russian Mir space station
55	(Kawamura et al., 2001), and the ISS (Castro et al., 2003) has relied on traditional,
56	culture-dependent methods for the isolation of microbes and molecular techniques for
57	species identification. Such techniques are informative, though limited to cultivable
58	microbes, and are very highly biased by cultivation strategies employed. Because of such
59	biases, studies of this nature have proven inadequate in thoroughly reporting the
60	microbial community structure from several environmental samplings, as validated by
61	molecular cloning measures (Pace et al., 1985; Giovannoni et al., 1990).
62	The presence of viable microorganisms in drinking water is of particular importance
63	to the health of astronauts, but methods for their detection and enumeration, such as
64	culture counting, are fraught with difficulties. Notably, different species require different
65	media or environments for growth, so in current microbial quality verification protocols,

66	not all cells are likely to be detected as colony-forming units (CFU). Adenosine
67	triphosphate (ATP) is used by all living organisms and can be exploited as an indicator
68	for the presence of living organisms, as many earlier studies have suggested (Chappelle
69	and Levine, 1968; Thore et al., 1975; Karl, 1980; Stanley, 1989; Venkateswaran et al.,
70	2002). Likewise, an endotoxin-based commercially available lipopolysaccharide (LPS)
71	detection (LAL) assay was also employed to rapidly analyze microbial contamination in
72	ISS drinking water samples (Chung et al., 2001). It is known that culturing viable
73	microbes from fastidiously processed samples using conventional microbial assay
74	techniques significantly underestimates the viable microbial population because of the
75	non-cultivability of certain microbes (Xu et al., 1982; Barer et al., 1993; Grimes et al.,
76	2000). The ATP-based assay detects all viable cells, as does molecular analyses based on
77	DNA isolated directly from samples (Pace et al., 1985; Giovannoni et al., 1990). These
78	bioassay techniques allow for better evaluations of microbial quality, and when carried
79	out in conjunction can provide a more complete understanding than plate counting of the
80	microbial species most likely to contaminate ISS drinking water samples.
81	This study is the first culture-independent, molecular microbial community analysis
82	of ISS and space shuttle drinking waters. It is of utmost importance to those concerned
83	with space-flight safety to assess inherent risks to astronaut health by continuously
84	monitoring the diversity of microbes that astronauts are most likely to be in contact with
85	while in space. The monitoring scheme employed in this study encompassed several
86	samplings of water intended for use on the STS-113 mission aboard the ISS, from the
87	originating municipal water supply, prior to and following biocide treatment, and directly
88	from fountains and storage cells within the ISS. Of immense concern to all involved with

. .

human inhabitation of the ISS is the possibility of pathogenic microorganisms originating
in the drinking water adversely affecting the health of astronauts.

91

92

106

MATERIALS AND METHODS

93 Sample collection. Water samples processed at the Kennedy Space Center (KSC) for the 94 STS-113 mission aboard the Endeavor OV-105 shuttle and at various sources from the 95 ISS were collected for microbiological examination. Appropriate aliquots of water were 96 collected from the Cocoa municipal water supply, FL, prior to (2 samples) and following 97 (3 samples) biocide treatment (8 ppm Iodine). Water samples were taken from the 98 Russian-built dispenser (designated SVO-ZV), which contained ground-supplied 99 Moscow water and space shuttle fuel cell water. In addition, water samples were obtained 100 from the hot port (designated SRV-K hot) of the Russian system used for humidity 101 condensate recovery (Samsonov et al., 2002). All KSC processed samples were kept at 102 4°C until analyzed. However, samples collected at ISS were transported in ambient 103 temperature and upon shuttle's arrival to Earth, samples were stored at 4°C until 104 examined. 105 **Culture-dependent assay.** Water samples processed at KSC were analyzed immediately

107 prior to, and following, biocidal treatment were placed into petri dishes and total aerobic

after collection. Appropriate aliquots of samples collected from the KSC municipal water

- 108 cultivable bacterial populations were enumerated by the pour plate techniques using R2A
- agar (Remel, Lenexa, KS) as the growth medium at 25°C. Colony forming units (CFU)
- 110 were enumerated after 7 days of incubation. Water samples from the SVO-ZV and SRV-

132	The time lag from the collection of the samples to the analysis ranged from 3 to 4
131	simultaneously for ATP, endotoxin, and 16S rDNA via molecular cloning analyses.
130	Culture-independent assays. All samples collected in this study were analyzed
129	Hazelwood, MO).
128	37°C for 24 hours and identified using the VITEK Identification System (bioMerieux,
127	Biosystems, Foster City, CA). All bacterial isolates were subcultured on blood agar at
126	sequenced using Microseq 500 16S rDNA Bacterial Sequencing Kit (Applied
125	Laboratories, Inc., Solana Beach, CA) and appropriate fragments were amplified and
124	(Castro et a., 2003). Briefly, DNA was extracted using commercial kits (Mo Bio
123	Identification of purified strains was determined based on 16S rDNA sequencing
122	were randomly selected, purified, and stored at -80° C for further processing and analysis.
121	shuttle arrival and cultured on R2A medium and incubated at 37°C for 48 hours. Isolates
120	samples from ISS were passed through 0.22 μ m membrane filters (Millipore) upon
119	recovered from all colony types observed. Additionally, aliquots of 100 mL of water
118	were overgrown with microorganisms or desiccated, thus viable cultures could not be
117	grown cultures were received up to 3 months after collection, many of the culture media
116	returned for ground-based analysis on the next available shuttle flight. Because flight-
115	Samples processed during flight were incubated at ambient temperature (25 to 30°C) and
114	(Remel) was added to an absorbent pad on the downstream side of the filter surface.
113	Bedford, MA) as previously reported (Koenig et al., 1995). A liquid R3A growth medium
112	filtered a 100 mL aliquot through a 0.45 μ m cellulose acetate field monitor (Millipore,
111	K hot port were processed during shuttle flight using a self-contained system which

•

133 months and should be considered when results of these analyses are compared with

6

.

.

conventional culture-dependent assays. It was difficult to directly compare results from
the assay techniques employed in this study (colony counts, ATP assay, LAL assay)
because these assays measured very different populations.

(i) ATP-based bioluminescent assay. Firefly luciferase catalyzes the reaction of 137 138 luciferin with ATP to form the intermediate luciferyl adenylate. Its subsequent reaction 139 with oxygen leads to a cyclic peroxide, whose breakdown yields CO₂ and the 140 oxyluciferin product in the electronically excited state, from which a photon is emitted 141 with a quantum yield of about 90% (Wilson and Hastings, 1998). The bioluminescence 142 generated is directly proportional to the amount of ATP in the sample being assayed, and 143 to the number of microorganisms in the sample assayed. The use of firefly luciferase to 144 assay ATP extracted from microorganisms provides a straightforward means to 145 enumerate microbes within minutes, and several companies have developed kits based on 146 this system. For our purposes, these kits allow the detection of total ATP, not only the 147 intracellular ATP from intact microbial cells, but also the extracellular ATP from dead 148 bacteria and non-microbial sources, such as lysed cells or debris. The extracellular ATP 149 can be eliminated enzymatically, so that the remaining ATP is attributable only to intact 150 microbial cells, both cultivable and non-cultivable. A kit for this purpose (CheckLite-HS 151 Set, Kikkoman Corp., San Francisco, CA) was used in the present study. 152

(ii) LPS-based endotoxin assay. When microorganisms invade an animal, the immune system responds by initiating a highly specific enzyme cascade in its blood cells (i.e. amebocytes). It is known that this cascade is initiated by the presence of LPS in Gramnegative bacteria and beta glucan in yeasts, and results in the formation of a gel-clot that destroys the invading microbes. The LPS-based microbial detection assay exploits this

principle as it occurs in the horse-shoe crab (*Limulus polyphemus*) coupled with a
chromogenic substrate. Hereafter, we refer to this as the limulus amoebocyte assay
(LAL). This method is most commonly used to quantify endotoxin and is the basis for the
American Society for Testing and Materials method E2144-01. Commercially available
kits (Charles River Laboratories, Wilmington, MA) were used to perform this rapid and
simple assay (2-hour) where appropriate aliquots of samples were mixed with reaction
reagents and clotting was measured colorimetrically.

164 (iii) Molecular Microbial Diversity analysis. DNA was extracted directly from one 165 representative sample each of pre-, post-biocide treatment; SRV-K hot and SVO-ZV 166 water to analyze molecular microbial diversity without cultivation. One hundred mL 167 from each sample was concentrated and subjected to DNA extraction following standard 168 lysozyme/organic solvent extraction protocols. Bacterial small subunit rDNA fragments 169 were PCR-amplified with eubacterially biased primers B27F and B1512R. PCR 170 conditions were as follows: 1 min. 95°C denaturation, 2 min. 55°C annealing, and 3 min. 171 72°C elongation for 35 cycles using a thermal cycler (MJ Research; Waltham, MA). 172 After 10 minutes incubation at 72°C, the amplification product was purified with a gel 173 excision kit (Qiagen, Chatsworth, CA). Purified amplicons were cloned into the pCR-4 174 TOPO vector by TA cloning (Invitrogen, Carlsbad, CA), per manufacturers' instruction. 175 Ribosomal DNA inserts were PCR-amplified from plasmid clones with commercially 176 available M13R and T7 primers. Amplification products were digested with the 177 restriction endonuclease *HhaI* (New England Biolabs, Beverly, MA) for 3 hours at 37°C. 178 Banding patterns were grouped according to similarity, and representative members of 179 each distinct pattern group were fully, bi-directionally sequenced (MWG Biotech Inc.,

180 High Point, NC). Multiple representatives were sequenced for RFLP patterns that had181 more than five members.

The phylogenetic relationships of organisms covered in this study were
determined by comparison of individual rDNA sequences to sequences in the public
database (http://www.ncbi.nlm.nih.gov/blast). Evolutionary trees were constructed using
PAUP software (Swofford, 1990).

186

187

RESULTS

188 **Culture-dependent analysis.** Although untreated municipal water samples contained 189 1.4×10^4 CFU/100 mL, the biocide agent added into the Cocoa municipal water rendered 190 the entire bacterial population non-cultivable (Table 1). The SRV-K hot water sample 191 collected from the Russian regenerated water system on board the ISS revealed 5.1×10^1

192 CFU/100 mL cultivable counts, whereas the water collected from the ISS drinking

193 fountain (SVO-ZV) did not show any CFU. Isolation of Acidovorax temperans, a halogen

194 (biocide) reducing bacterium from the SRV-K hot water sample is especially interesting

since molecular cloning analyses yielded 7 A. temperans clones. The ability of A.

196 *temperans* to withstand varying concentrations of biocide should be studied, as well as

197 the possibility of this microbe entering into a "viable but non-cultivable" state due to the

198 bactericidal agent. Re-analysis of the SVO-ZV water sample upon shuttle arrival yielded

199 colonies of Methylobacterium fujisawaensae and Sphingomonas yanoikuyae after

200 prolonged incubation. However, such bacterial colonies were not isolated from the in-

201 flight cultivation system. Presumably, under microgravity, *M. fujisawaensae* and *S.*

202 yanoikuyae cells might have undergone changes in cell morphology. Hence, during in-

flight filtration, these microcolonies might have passed through the 0.45 μ m filters but were trapped in the 0.22 μ m filtration system employed on the ground. Further research is warranted to confirm this observation.

206

207 Culture-independent analyses.

208 (i) ATP-based bioluminescent assay. Samples collected from the Cocoa municipal

209 drinking water storage facility before biocide treatment showed presence of 1.3×10^5

210 relative luminescence units of ATP per 100 mL, which is one order magnitude higher

than cultivable counts, measured (Table 1). The water collected from the SRV-K hot port

system contained 4.8×10^4 relative luminescence units per 100 mL compared to no

213 detectable quantity of ATP from the SVO-ZV drinking water. Further analysis is

214 necessary to confirm this result. The ability of this system to measure relative amounts of

215 ATP in the presence of iodide should also be explored, as partial or total inhibition is

216 possible.

(ii) LPS-based endotoxin assay. The results of the LAL measurements, as measured by 217 218 endotoxin units, are given in Table 1. As seen in cultivable count analyses and the ATP 219 assay, LAL analysis revealed a lower bio-burden following treatment of the drinking 220 water with iodine. The biological reduction was 2 logs after biocide treatment. However, 221 a considerable amount of measurable endotoxin (equvalent to the Cocoa, FL municipal 222 water) in the water collected from the SRV-K hot port suggests the presence of microbial fragments in this sample. Similarly, microbial endotoxin units were about 2.4×10^{11} 223 224 pg/100 mL in the sample collected from the SVO-ZV drinking water aboard the ISS 225 where no cultivable counts and measurable ATP were recorded. 226 (iii) Molecular microbial community analysis. Typical RFLP patterns showing highly diversified microbial populations from the SRV-K hot (Fig. 1A) and SVO-ZV (Fig. 1B) 227 228 samples are depicted. Representatives of various patterns were selected and sequenced 229 for further community analysis. Among the sequences retrieved directly from the various 230 water samples analyzed in this study were representatives of five clades, the 231 α -, β -, and γ - proteobacteria, the actinomycetales, and CFB-group bacteria (Fig. 2). The 232 phylogenetic tree based on 16S rDNA sequences for the ground-processed Cocoa 233 municipal water, before and after biocide treatment (Fig. 2A) and SRV-K hot as well as 234 SVO-ZV water samples (Fig. 2B) are shown. In total, among 39 clones selected for 235 sequencing, 15 different bacterial species were observed. The clone library representing 236 the Cocoa municipal water was limited in diversity to two bacterial species, 237 Pseudomonas fragi (70 of 96 clones; 73%) and P. stutzeri (26 of 96 clones; 27%). 238 Likewise, members of Ralstonia, Herbasprillum and Sphingomonas were seen in the 239 water samples that were treated with biocide. RFLP analyses of cloned bacterial 16S-

240	rDNA fragments recovered from the SVO-ZV drinking water sample yielded 9 distinct
241	species from the 96 individually processed clones, whereas the SRV-K hot water sample
242	yielded 8 species (Table 2). Phylogenetic analyses of the gene sequences showed
243	moderate, overlapping bacterial diversity between the SVO-ZV and SRV-K hot libraries.
244	Sequences related to actinomycetales, and the α -, β -, and γ -proteobacteria lineages, were
245	found in both the drinking water and the regenerated water samples. A sole representative
246	of the CFB group, Flexibacter japonensis, was retrieved from the SRV-K hot library. The
247	most dominant genera, based on sequences recovered, were Afipia and Ralstonia. The
248	Afipia genus was representative of 47 of the 96 SRV-K hot clones (49%), but was not
249	represented in the SVO-ZV clone library. It is important to indicate that clones of
250	Ralstonia were retrieved from the post-biocide treated Cocoa municipal water, SRV-K
251	hot and SVO-ZV samples. A higher incidence of Ralstonia gene sequences on spacecraft
252	(15%) assembled in KSC encapsulation facilities (30%) has been previously documented
253	(unpublished information).
254	Other sequences retrieved from both libraries included Delftia acidovorans (~7 to
255	16% of each library), Caulobacter crescentus (~7 to 16% of each library), and
256	Propionibacterium acnes (~4% of each library). Some sequences were retrieved from one
257	sample or the other, but not both. Gene sequences of A. temperans, Stenotrophomonas
258	maltophila, and F. japonensis were retrieved only from the SRV-K hot sample, while
259	Hyphomicrobium facilis, Brevundimonas diminuta, Ochrobactrum tritici, and
260	Bradyrhizobium japonicum rDNAs were retrieved only from the SVO-ZV sample.
261	

.

.

DISCUSSION

Biomolecule-targeted microbial detection methods were extremely sensitive in 263 264 enumerating the total microbial burden of the ISS potable waters. The use of biocide 265 eliminated the cultivability of certain microbes, however, various sophisticated 266 methodologies employed in this study revealed the presence of "viable but not cultivable" 267 microbes. Perhaps the most significant finding was the retrieval of 16S rDNA sequences 268 having highest similarities with several opportunistic human pathogens (Table 2) directly 269 from ISS potable waters (SVO-ZV and SRV-K). Cultures of A. broomeae reportedly 270 cause disease in humans through associations with amoeba. Patients in intensive care 271 units (ICU) often become infected and sometimes gravely ill following exposure to A. 272 broomeae. Water samples taken from ICU taps and general hospital reservoir tanks of 4 273 university hospitals in Marseilles, France were tested for this pathogen by co-culturing 274 with amoeba, and cultures of A. broomeae were isolated. In addition, elevated Afipia-275 antibody titers were found in the ICU patient blood (La Scola, et al., 2002). The disease 276 caused by Afipia species is commonly referred to as cat scratch disease and in 1994, the 277 Center for Disease Control, USA warned of this bacterium becoming an emerging 278 pathogen. Although we do not know whether these alpha proteobacteria are alive in the 279 ISS water samples collected, it is important to make an attempt to culture these 280 problematic microbes.

In addition to *Afipia*, cultures of *O. anthropi* and *P. acnes* have been reported to cause illness in immuno-compromised patients. The former causes hyperuricemia and the latter microbe damages the livers of healthy individuals. The 16S rDNA sequence of *O. anthropi* is identical to that of certain species of *Brucella*, a highly virulent pathogen. The

opportunistic pathogen, *Ochrobactrum*, produces purine nucleosidases that metabolize
purines and pyrimidines. The description of immuno-deficiency syndromes in association
with purine enzyme deficiency has led to a novel area of investigation encompassing the
biochemical basis for immune function (Edwards and Fox, 1984). Hyperuricemia and
gout are the most common disorders arising from this bacterial infection (Ogawa et al.,
2001).

291 *Propionibacterium* is an anaerobic cocci and is part of the normal microflora of 292 the skin, conjunctiva, mouth, upper respiratory tract, external ear canal and intestine. The 293 culture-dependent assays employed in this study detect only aerobic microbes, thus P. 294 acnes, being anaerobic, would not have grown in the methods employed to cultivate 295 microbes in this study. Despite being considered non-pathogenic for humans, there have 296 been several reports of *Propionibacterium* species causing numerous infections 297 (Yoshikawa et al., 1975). Significant infections caused by *Propionibacterium* species are 298 associated with the blood, central nervous system, lymph glands, abscesses, joints, 299 wounds, cysts and sinuses (Brook and Frazier, 1991). It was further observed that 300 Propionibacterium causes disease in immuno-deficient patients. Recently, Ullmann et al. 301 (2000) reported hepatic granuloma due to P. acnes in a patient with acute myelogenous 302 leukemia. The retrieval of sequences of opportunistic pathogens from ISS potable waters 303 may warrant concern, however, a larger emphasis should be placed on the cultivation, or 304 lack thereof, of these pathogenic microorganisms.

Also of particular interest was the retrieval of halogen-reducing bacterial DNA
 sequences. Iodide and other halogen-biocides are utilized to minimize the active
 microbial populations in these water systems. It is interesting that microbes adapted to

308	these measures, far more – able to degrade such decontaminating agents, are so prevalent
309	when assessed by 16S rDNA community analyses. The presence of D. acidovorans is
310	significant since this organism has been reported to reduce bromate compounds.
311	Incidentally, the drinking water for the ISS was processed with iodine as a biocide.
312	Bromium and iodine are of the same molecular weight and the survival of such iodine
313	reducing microbes in the biocide-treated water indicates that biocide treatment was not
314	completely effective in eradicating the total microbial population. Some biocide resistant
315	microbes might have survived the treatment process or have been injured and rendered
316	non-cultivable with the culture techniques employed.
317	Additionally, microbes that could only survive in low nutrient aquatic
318	environments such as Hyphomicrobium and Caulobacter species were observed in both
319	ISS potable water samples examined during this study. These stalked bacteria adhere to
320	solid surfaces via a holdfast at the tip of the stalk. From current literature, it can be
321	hypothesized that these oligotrophic microorganisms might have formed biofilms in the
322	pipelines as well as tanks used to store drinking water. Although previous investigations
323	revealed biofilm formation of Hyphomicrobium in drinking water treatment plants (Holm
324	et al., 1996), thorough investigation of the ISS drinking water system is necessary to
325	confirm this fact.
326	The retrieval of only Pseudomonas sp. rDNA sequences from the municipal water

.

328

327 sample, while a much more diverse population was observed in both of the potable ISS reservoirs, is suggestive of a post-vessel-loading contamination event. Perhaps the

329 bladder(s) of one or more reservoirs in contact with water aboard the shuttle and/or ISS is

330 in some way contaminated. Biofilm attachment to such surfaces is not unusual. Indeed,

studies have shown that surfaces constantly in contact with water are easily colonized and
frequently fall victim to biofilm contamination (Soini et al., 2002; Donlan 2002). Further
studies must be conducted to validate this claim.

334 In comparing the results from cultivation-based and molecular approaches, a 335 drastically larger diversity is observed when analyzing by molecular, culture-independent 336 methods. The microbial diversity observed by culturing isolates does not correlate with 337 that seen in clone libraries, as is common in studies of this kind. One possible cause of 338 such disagreement is biases associated with both cultivation and PCR. Molecular cloning-339 based methods showed more diverse populations from both the SRV-K hot and SVO-ZV 340 potable water samples than did the culture-based methods employed. This is reasonable since recovery of DNA fragments yields information from the total microbial population 341 342 present, dead or alive, unlike culturing finicky microorganisms that require specific 343 conditions for growth. There were some sequences retrieved from one library or the other, but not both. These non-overlapping sequences could be due to the small sample 344 345 size (96 clones from each of the water samples).

The physiological state(s) of the opportunistic pathogens indicated by 16S rDNA 346 347 detection remains to be determined. At this time it is not feasible to offer any hypotheses 348 on the matter. Possible explanations abound, one being that these sequences are arising 349 from non-living, remnants of once active opportunistic pathogens. Another possibility is 350 that the sequences are arising from viable, active microbes. Furthermore, regardless of 351 the physiological state of the pathogen, considerable responses can be elicited by the 352 human immune system to antigens whether associated with a living microbe, or non-353 living cellular debris. Such immune and/or allergic responses can seriously hinder the

354	cor	nfort, or much worse – general health of astronauts aboard the ISS. Future research		
355	into the activity of these contaminating microbes via reverse transcriptase-PCR and			
356	related techniques is necessary.			
357				
358		ACKNOWLEDGMENTS		
359	We	e thank D. Jan, N. Packham, M. Ott and K. Buxbaum for valuable advice and		
360	enc	couragement. We acknowledge V. Castro and A. Thrasher for assistance in the		
361	col	lection of water samples. The research described in this publication was carried out at		
362	the	Jet Propulsion Laboratory, California Institute of Technology, under a contract with		
363	the	National Aeronautics and Space Administration.		
364				
365		REFERENCES		
366	1.	Anonymous. (1980). NASA Standard Procedures for the Microbiological		
367		Examination of Space Hardware, NHB 5340.1B, 1980, Jet Propulsion Laboratory		
368		communication, National Aeronautics and Space Administration.		
369	2.	Barer, M. R., L. T. Gribbon, C. R. Harwood, and C. E. Nwoguh. (1993). The		
370		viable but non-culturable hypothesis and medical microbiology. Rev. Med.		
371		Microbiol. 4:183–191.		
372	3.	Brook I. and Frazier E. H. (1991) Infections caused by Propionibacterium species.		
373		Rev Infect Dis. 13:819-822		
374	4.	Castro, V. A., Thrasher, A. N., Healy, M., Ott, C. M. and Pierson, D. L. (2003).		
375		Microbial diversity aboard spacecraft: Evaluation of the International Space Station.		
376		Microb. Ecol. (in press).		

•

.

377	5.	Chappelle, E. W., Levin, G. V. (1968). Use of the firefly bioluminescence reaction
378		for rapid detection and counting of bacteria. Biochem. Med. 2: 41-52.
379	6.	Chung, S., Venkateswaran, K., Schubert, W., Echeveria, C., Kazarians, G.,
380		Kern, R., Wainwright, N., and Basic, C. (2001). Microbial populations in
381		spacecraft assembly facilities as determined by limulus amebocyte lysate assay. 101 st
382		General meeting of the American Society of Microbiology, Orlando, FL.
383	7.	Donlan R. M. (2002). Biofilms: microbial life on surfaces. Emerg Infect Dis
384		8 :881-890.
385	8.	Edwards, N. L. and Fox, I. H. (1984). Disorders associated with purine and
386		pyrimidine metabolism. Spec. Top. Endocrinol. Metab. 6:95-140.
387	9.	Favero, M. S. (1971). Microbiologic assay of space hardware. Environ. Biol. Med. 1:
388		27-36.
389	10.	Favero, M. S., McDade, J. J., Robertsen, J. A., Hoffman, R. K., and R. W.
390		Edwards. (1968). Microbiological sampling of surfaces. J. Appl. Bacteriol. 3:336-
391		343.
392	11.	Favero, M. S., Puleo, J. R., Marshall, J. H., and G. S. Oxborrow. (1966).
393		Comparative levels and types of microbial contamination detected in industrial clean
394		rooms. Appl. Microbiol. 4:539-551.
395	12.	Favero, M. S., Puleo, J. R., Marshall, J. H., and G. S. Oxborrow. (1968).
396		Comparison of microbial contamination levels among hospital operating rooms and
397		industrial clean rooms. 3:480-486.
398	13.	Ferguson J. K., Taylor, G. R., and Mieszkue, B. J. (1975). Microbiological
399		investigations. In: Johnston, R.S., Deitlein, L.F., and Berry, C.A. (eds.), Biomedical

.

~

- 400 Results of Apollo. Scientific and Technical Information Office, National Aeronautics
 401 and Space Administration. Pp. 83-103.
- 402 14. Giovannoni S. J., Britschgi T. B., Moyer C. L., and Field K. G. (1990). Genetic
- 403 diversity in Sargasso Sea bacterioplankton. Nature. **345**:60-63.
- 404 15. Grimes, D. J., Mills, A. L., and Nealson, K. H. (2000). The Importance of Viable
- 405 but Nonculturable Bacteria in Biogeochemistry. p. 209-227, *In* Nonculturable
- 406 Microorganisms in the Environment. (R. R. Colwell and D. J. Grimes, Editors. ASM
- 407 Press, Washington DC Brook, I. and Frazier, E.H. 1991. Infections caused by
- 408 *Propionibacterium* species. Rev. Infect. Dis. 13:819-822.
- 409 16. Holm, N. C., Gliesche, C. G., and Hirsch, P. (1996). Diversity and structure of
- 410 *Hyphomicrobium* populations in a sewage treatment plant and its adjacent receiving
- 411 lake. Appl. Environ. Microbiol. 62:522-528.
- 412 17. Karl, D. (1980). Cellular nucleotide measurements and applications in microbial
- 413 ecology. Microbiol. Rev. 44:739-796.
- 414 18. Kawamura, Y., Li, Y., Liu, H., Huang, X., Li, Z., and Ezaki, T. (2001). Bacterial
- 415 population n Russian Space Station "Mir". Microbiol. Immunol. **45**:819-828.
- 416 19. Koenig, D. W. and Pierson, D. L. (1977). Microbiology of the space shuttle water
- 417 system. Wat. Sci. Tech. 35:59-64.
- 418 20. Koenig, D. W., Bell-Robinson, D. M., Johnson, S. M., Mishra, S. K., Sauer, R. L.
- 419 and Pierson, D. L. (1995). Microbiological analysis in space. Presented at the 25th
- 420 International Conference on Environmental Systems, San Diego, CA. SAE Technical
- 421 Paper Series 951683.

422	21. La Scola B, Mezi L, Auffray J P, Berland Y, and Raoult D. (2002). Patients in the
423	intensive care unit are exposed to amoeba-associated pathogens. Infect Control Hosp
424	Epidemiol. 23:462-465.
425	22. Lleo', M. M., M. C. Tafi, and P. Canepari. (1998). Nonculturable Enterococcus
426	faecalis cells are metabolically active and capable of resuming active growth. System.
427	Appl. Microbiol. 21:333–339.
428	23. Ogawa, J., Takeda, S., Xie, S., Hatanaka, H., Ashikari, T., Amachi, T., and
429	Shimizu, S. (2001). Purification, characterization, and gene cloning of purine
430	nucleosidase from Ochrobactrum anthropi. Appl. Environ. Microbiol. 67:1783-1787.
431	24. Oliver, J. D. (1993). Formation of viable but nonculturable cells, p. 239–272. In S.
432	Kjelleberg (ed.), Starvation in bacteria. Plenum Press, Inc., New York, N.Y.
433	25. Pace, N. R., Stahl, D. A., Lane, D. J., and Olsen, G. J. (1985). The analysis of
434	natural microbial communities by ribosomal RNA sequences. Microb. Ecol. 9, 1-56.
435	26. Pierson, D.L. (2001). Microbial contamination of spacecraft. Gravitational and Space
436	Biology Bulletin. 14:1-6.
437	27. Roszak, D. B., and R. R. Colwell (1987). Survival strategies of the bacteria in the
438	natural environment. Microbiol. Rev. 51:365-379.
439	28. Samsonov N. M., Bobe L. S., Gavrilov L. I., Korolev V. P., Novikov V. M.,
440	Farafonov N. S., Soloukhin V. A., Romanov S. J., Andrechuk P. O., Protasov N.
441	N., Rjabkin A. M., Telegin A. A., Sinjak J. E., and Skuratov V. M. (2002) Water
442	recovery and oxygen generation by electrolysisaboard the International Space Station
443	Presented at the 32nd International Conference on Environmental Systems, San
444	Antonio, TX. SAE Technical Paper Series 2002-01-2358.

~

- 445 29. Soini S. M., Koskinen K. T., Vilenius M. J., and Puhakka J. A. (2002). Effects of
- 446 fluid-flow velocity and water quality on planktonic and sessile microbial growth in
- 447 water hydraulic system. Water Res. **36**:3812-3820.
- 448 30. Stanley, P. E. (1989). A review of bioluminescent ATP techniques in rapid
- 449 microbiology. J. Biolumin. Chemilumin. 4,375-380.
- 450 31. Stowe R. P., Mehta S. K., Ferrando A. A., Feeback D. L., and Pierson D. L.
- 451 (2001). Immune responses and latent herpesvirus reactivation in spaceflight. Aviat
- 452 Space Environ Med. **72**:884-91.
- 453 32. Swofford, D. (1990). PAUP: phylogenetic analysis using parsimony, version 3.0.
- 454 Computer program distributed by the Illinois Natural History Survey, Champaign, IL.
- 455 33. Thore, A., Ansehn, S., Lundin, A., and Bergman, S. (1975). Detection of bacteria
- 456 by luciferase assay of adenosine triphosphate. J. Clin. Microbiol. 1:1-8.
- 457 34. Ullmann, A. J., Helmreich-Becker, I., Maeurer, M. J., Han, S., Heussel, C. P.,
- 458 Koehler, H. H., Fischer, T., and Huber, C. (2000). Hepatic granuloma due to
- 459 *Propionibacterium acnes* in a patient with acute myelogenous leukemia. Clin. Infec.
- 460 Dis. **30**:219-220.
- 461 35. Venkateswaran, K., Hattori, N., La Duc, M. T., and Kern, R. (2002). ATP as a
- biomarker for viable microorganisms in clean-room facilities. J. Microbiol. Method.
- **4**63 **52**:367-377.
- 464 36. Wilson, T., and Hastings, J. W. (1998). Bioluminescence. Annu Rev Cell Dev Biol.
 465 14:197-230. Review.

466	37. Xu, HS., Roberts, N., Singleton, F. L., Attwell, R. W., Grimes, D. J., and
467	Colwell, R. R. (1982). Survival and viability of nonculturable Escherichia coli and
468	Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8:313-323.
469	38. Yoshikawa, T. T., Chow, A. W., and Guze, L. B. (1975). Role of anaerobic bacteria
470	in subdural empyema; report of four case and review of 327 cases from the English
471	literature. Am. J. Med. 58:99-104.
472	
473	
474	Legends for Figures.
475	Figure 1. RFLP patterns from <i>HhaI</i> digest of the 16S rDNA sequences from several
476	bacterial clones. Genes were amplified and digested with restriction enzymes as
477	described in Materials and Methods. Lanes are labeled according to the loading of clone
478	DNA digests. A 100bp DNA ladder is included as a size marker.
479	
480	
481	Figure 2. Phylogenetic affiliations of microbial clones retrieved from water samples
482	processed for the ISS. (A) KSC-processed water samples, pre-biocide [V4] and post-
483	biocide [M3] treatment. (B) International space station water samples, SRV-K and SVO-
484	ZV designations are given for the regenerative water and drinking water, respectively.
485	Bacterial names of the nearest neighbor followed by GenBank accession numbers are
486	given. Numbers that follow the sample name denote clone number.
487	

Sample #	Description	Total cultivable counts	Intracellular ATP	Endotoxin
		CFU/100mL	RLU/100mL	pg/100mL
V1	Before biocide treatment	1.3x10⁴	1.3x10⁵	3.0x10 ²
V4	Before biocide treatment	2.0x10 ⁴	1.0x10 ⁵	3.0x10 ²
M1	After biocide treatment	0	0	2
M2	After biocide treatment	0	0	0
М3	After biocide treatment	0	0	1
SRV-K hot	Regenerated water to rehydrate foods	5.1x10 ¹	4.8x10 ⁵	2.1x10 ²
SVO-ZV	Potable water	0	0	2.4x10 ¹

Table 1. Microbiological characteristics of drinking water samples processed for the International Space Station

Abbreviations: CFU, Colony forming units; RLU, Relative luminescence unit; pg, picogram

	Percent	Number of clones retrieved from:		к.	
Nearest neighboring bacterial species	similarities of 16S rDNA sequences	Regenerated water Potable water (SRV-K hot) (SVO-ZV)		Remarks	
Afipia broomeae	>99.3	47		Cat scrach disease; CDC warning as an emerging pathogen	
Ralstonia detusculanense	>99.9	14	28	Brackish water microbe; isolated on Mars Odyssesy surfaces	
Caulobacter crescentus	>95.0	7	15	Common in drinking water	
Delftia acidovorans	>99.7	7	15	Bromate and idodine-reducing bacterium	
Propionibacterium acnes	>99.7	3	5	Opportunistic pathogen; liver lesions	
Acidovorax temperans	>99.0	7		Denitrification of drinking water	
Flexibacter japonensis	>100.0	7		Produce human leukocyte elastase inhibitor	
Stenotrophomonas maltophila	>99.8	4		Opportunistic pathogen	
Bradyrhizobium japonicum	>97.4		13	Nitogen fixing symbiotic bacterium	
Hyphomicrobium facilis	>99.8		10	Common in drinking water	
Ochrobactrum anthropi	>97.2		5	Mimics Brucella sp. which is a deadly pathogen; Ochrobactrum causes hyperuricen	
Brevundimonas diminuta	>96.0		3		
Escherichia coli	>99.0		2	Common enteric bacteria	

.

Table 2. Microbial diversity associated with the International Space Station drinking water

ı .

Fig. 1

(A) SRV-K hot (regenerated ISS water)

(B) SVO-ZV (ISS drinking water)

